

Nowcasting and Short-Term Forecasting of Russia GDP

Elena Deryugina Alexey Ponomarenko Aleksey Porshakov Andrey Sinyakov

Bank of Russia

12th ESCB Emerging Markets Workshop, Saariselka December 11, 2014

The views expressed in this presentation are those of the authors and do not necessarily reflect those of the Bank of Russia

Outline

- **D** Motivation
- Methodology and Data
- **Results**
- Implications
- New data and changes in a given nowcast
- Block's contribution to GDP nowcast in 2014
- **Conclusions**

Motivation

1. Fill the gap in nowcasting and short-term forecasting at the Bank of Russia on the way to full Inflation Targeting

Whether large data set is necessary?

Pros:

- Large information set helps in forecasting: Boivin and Ng (2005), Forni, Hallin, Lippi, and Reichlin (2003)
- and nowcasting in some countries: CNB Rusnak (2013), USA "GDPNow"
- Bridge equations are not worse for nowcasting: Germany Antipa et al. (2012), Brazil Bragoli, et al. (2014)

- Robustness to outliers and revisions in individual series

Challenges:

- Low vs. high frequency
- Missing Values/"Ragged End Problem"
- Curse of dimensionality

Larger sample vs. smaller sample: Bessec (2012) on FranceFull large sample vs. particular blocks of data: Bessec (2012) on France2. Provide a closer look at "drivers" of GDP growth in Russia

Methodology and Data I

Dynamic Factor Model (DFM) of Doz, Giannone, Reichlin (2011), Giannone, Reichlin, Small (2008) Consistent estimates of common factors

$$\begin{aligned} x_t &= \Lambda F_t + \varepsilon_t \\ F_t &= \Omega F_{t-1} + \xi_t \\ y_{t'} &= C + A_1 F_{t'} + A_2 F_{t'-1} + \alpha y_{t'-1} + \eta_{t'} \end{aligned}$$

Where: x_t - nx1 vector of monthly observed series at month t, after Mariano&Murasawa (2003) transformation

- F_t kx1 vector of monthly latent factors at month t
- $y_{t'}$ quarterly real GDP growth (SA QoQ), $F_{t'} = F_t$ for t=3t', t'=1,2,3,....
- ε_t error term (not iid), independent of F_t ;

 ξ_t and η_t - iid,

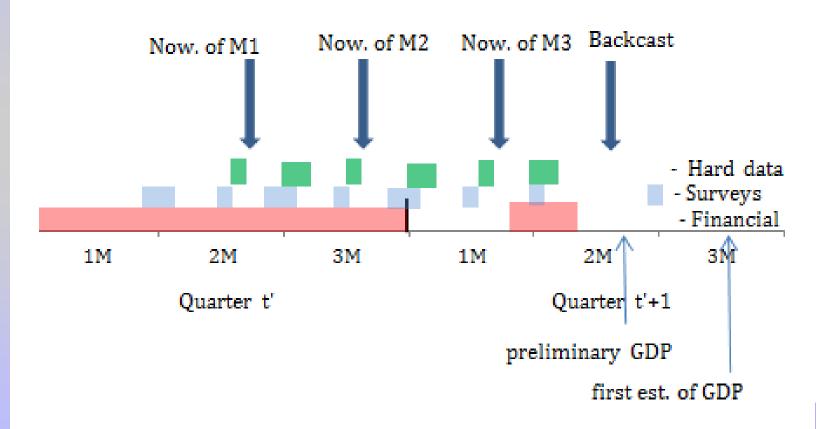
 $\varepsilon_t, \xi_t, \eta_t$ - independent of each other

Methodology and Data II

Mariano&Murasawa (2003) transformation

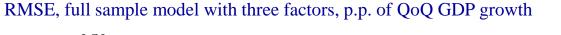
Example: X_t - Industrial Production in month t $x_t = \frac{1}{3} ((\ln X_t - \ln X_{t-3}) + (\ln X_{t-1} - \ln X_{t-4}) + (\ln X_{t-2} - \ln X_{t-5}))$

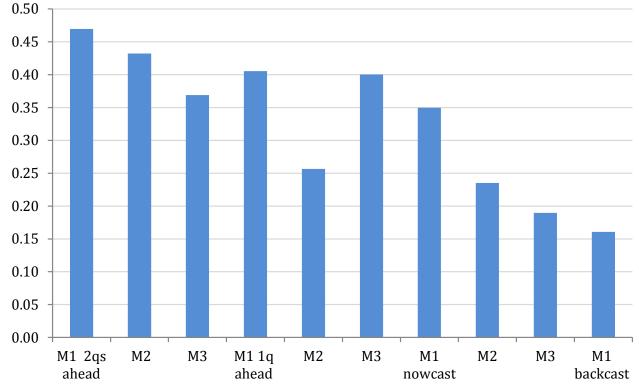
Sample: January 2002 - November 2014


Surveys – 50 series Hard data – 36 series External and Financial – 30 series Full sample – 116 series

Pseudo Real Time starts January 2006 or January 2012Revisions: lack of unrevised data series for RussiaSeasonality: month by month for out-of-sample SA in TRAMO/SEATS

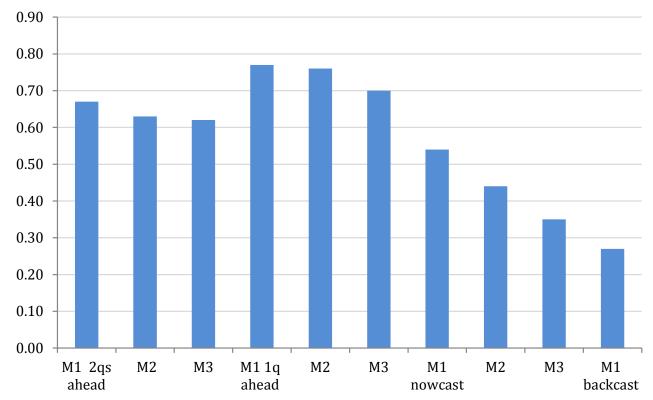
Methodology and Data III


Month t is included in calculations on 20th day after month t

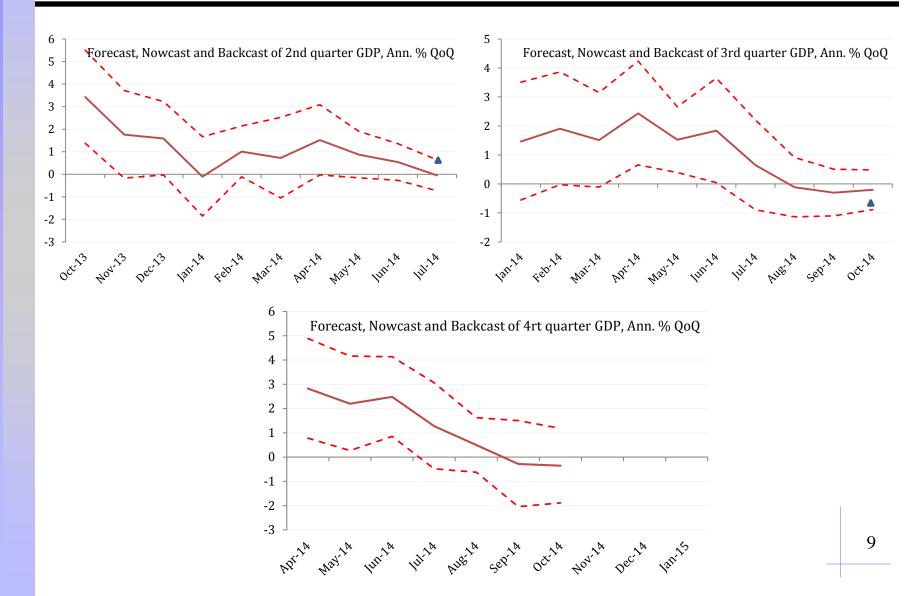


Results I General

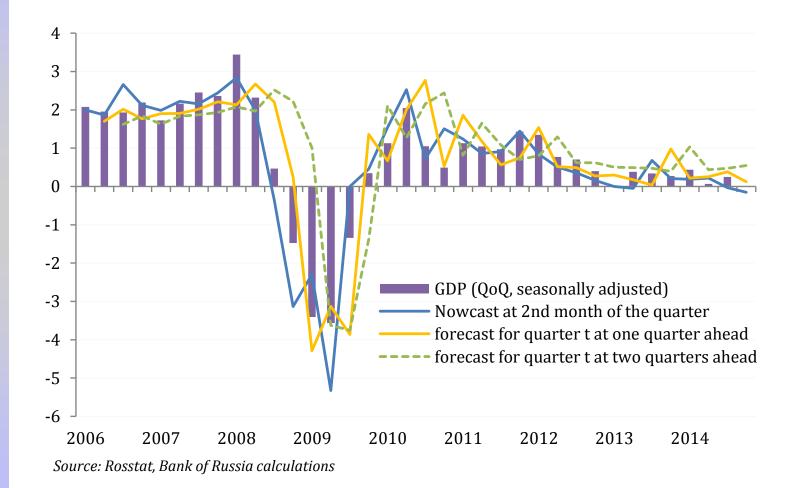
Root Mean Squared Error (RMSE) of out-of-sample backcast/nowcast/forecast in pseudo real time 2012 - 3^{rd} quarter of 2014



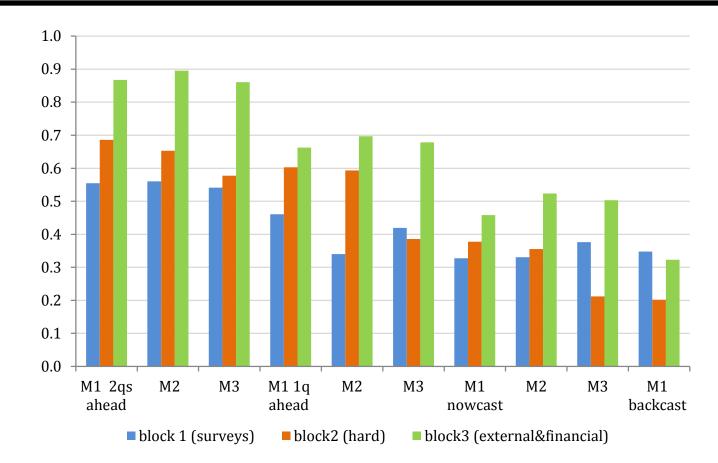
Results II General


Root Mean Squared Error (RMSE) of out-of-sample backcast/nowcast/forecast in pseudo real time 2006 - 3rd quarter of 2014

RMSE, full sample model with three factors, p.p. of QoQ GDP growth

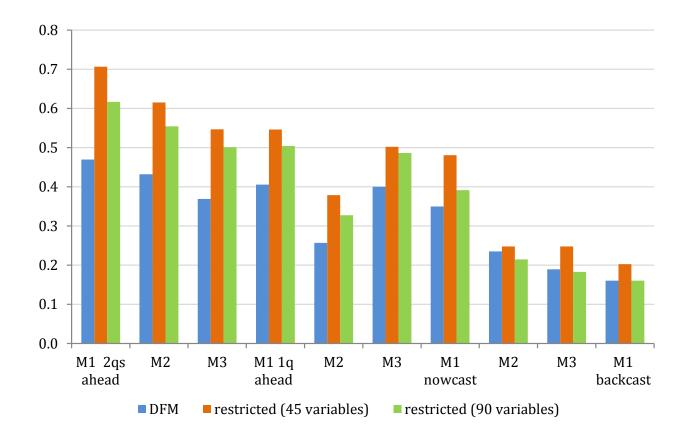


Results III Bootstrapping 70% confidence intervals



Results IV Nowcasts and Forecasts vs. QoQ GDP

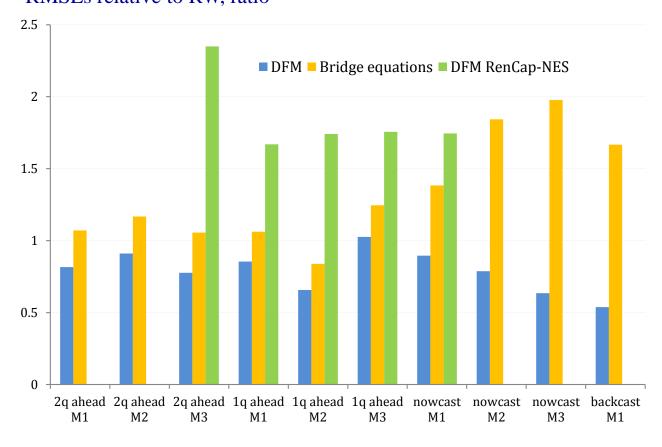
Results V Full sample vs. particular data blocks (starting 2012)



Diebold&Mariano (2002) test: 5% significance for full sample (or surveys) comparing with other combinations at forecasting. Hard data win at Nowcasting

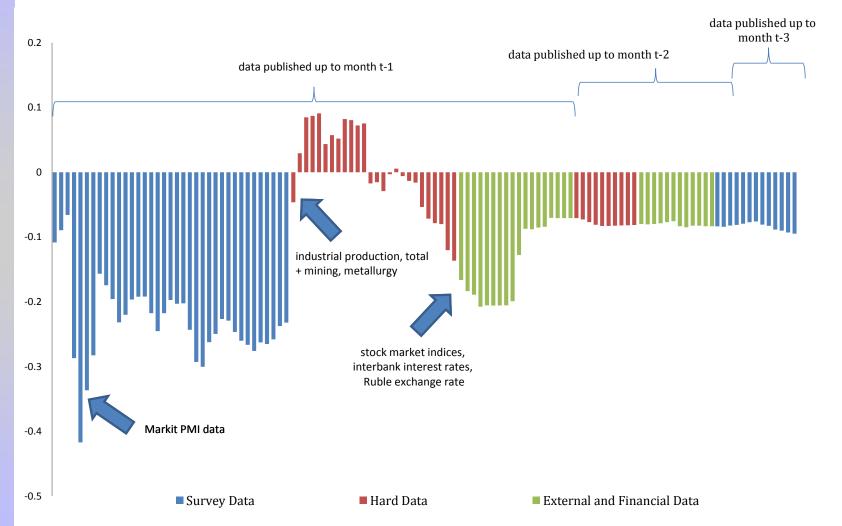
Results VI full sample vs. smaller sample (2012)

Restricted sample: balanced by blocks of 90 or 45 series



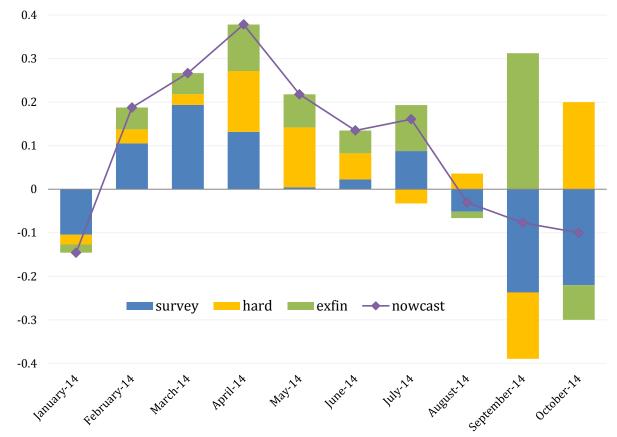
Diebold&Mariano (2002) test: the full DFM model is better for forecasting 12

Results VII DFM vs. Alternatives


Sample: from 2012 to 3rd quarter 2014 RMSEs relative to RW, ratio

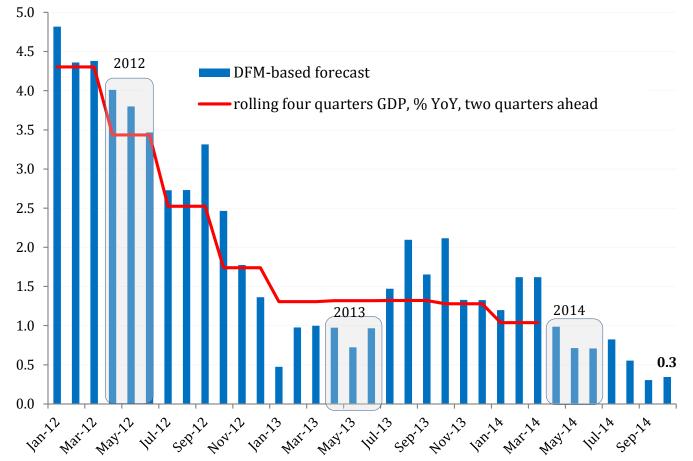
Diebold&Mariano (2002) test: the DFM model is better even for forecasting

Implications I New information and October's nowcast



Implications II Block decomposition of GDP nowcast in 2014

How to define which block comes first? Look at average over 6 (=3*2*1) decompositions


GDP nowcast and contemporary block contributions to the nowcast at given month, %QoQ Lagged GDP impact is usually small and absent for simplicity

Implications III Rolling year GDP forecast

According to our exercise, we produce GDP forecast for the whole year as soon as April's statistics is released

Conclusions

DFM models demonstrate plausible forecasting performance of Russian GDP

Analysis of RMSE's, including the conventional Diebold-Mariano test, shows better performance of DFMs in predicting Russian GDP vis-à-vis most common benchmark models

DFM specifications on over 100 variables

- outperform DFMs with fewer variables at forecast horizons
- have equal nowcasting accuracy to specifications on 36 variables with hard data included

Back up slide

Model and Forecast Horizon	FORECAST T+2			FORECAST T+1			NOWCAST T			BACKCAST T-1
	Month 1	Month 2	Month 3	Month 1	Month 2	Month 3	Month 1	Month 2	Month 3	Month 1
full_sample	0.47	0.43	0.37	0.41	0.26	0.40	0.35	0.24	0.19	0.16
block1_survey	0.55	0.56	0.54	0.46	0.34	0.42	0.33	0.33	0.38	0.35
block2_hard	0.69	0.65	0.58	0.60	0.59	0.39	0.38	0.36	0.21	0.20
block3_exfin	0.87	0.90	0.86	0.66	0.70	0.68	0.46	0.52	0.50	0.32
blocks 1&2	0.64	0.59	0.49	0.47	0.35	0.43	0.38	0.30	0.23	0.21
blocks 2&3	0.53	0.51	0.40	0.42	0.48	0.33	0.30	0.36	0.23	0.18
blocks 1&3	0.50	0.49	0.41	0.50	0.34	0.38	0.38	0.28	0.22	0.21
Best DFM	0.47	0.43	0.37	0.41	0.26	0.33	0.30	0.24	0.19	0.16
RW	0.58	0.47	0.47	0.47	0.39	0.39	0.39	0.30	0.30	0.30
BRIDGE							0.54	0.55	0.59	0.50
NES-RENCAP			1.12	0.79	0.68	0.69	0.68			
Best Benchmark										

References

- Antipa, P. & Barhoumi, K. & Brunhes-Lesage, V. & Darné, O., 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Working papers 401, Banque de France.
- Doz C., Giannone D., Reichlin L. (2011). "A two-step estimator for large approximate dynamic factor models based on Kalman filtering", CEPR Discussion Paper, No. 6043. A paraotre dans Journal of Econometrics.
- Bai, Jushan, and Serena Ng (2005), "Understanding and Comparing Factor based Forecasts",
- Bai, Jushan, and Serena Ng (2008), "Forecasting Economic Time Series Using Targeted Predictors", Journal of Econometrics 146, 304-317
- Bańbura, Marta & Giannone, Domenico & Reichlin, Lucrezia, 2010.
 "Nowcasting" Working Paper Series 1275, European Central Bank.
- Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-casting and the real-time data flow," Working Paper Series 1564, European Central Bank.
- Bessec, M., 2012. "Short-term forecasts of French GDP: a dynamic factor model with targeted predictors," Working papers 409, Banque de France
- The Importance of Updating: Evidence from a Brazilian Nowcasting Model. D Bragoli, L Metelli, M Modugno. FEDS Working Paper, 2014.

References II

- Doz C., Giannone D., Reichlin L. (2006). "A quasi maximum likelihood approach for large approximate dynamic factor models", CEPR Discussion Paper, No. 5724.
- Giannone, Domenico, Lucrezia Reichlin, and David Small (2008), "Nowcasting: The Real-Time Informational Content of Macroeconomic Data", Journal of Monetary Economics 55, 665-676.
- Mariano, R., and Y. Murasawa (2003): "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, 18, 427–443.
- Marek Rusnák, 2013. "Nowcasting Czech GDP in Real Time", Working Papers 2013/6, Czech National Bank, Research Department.
- Stock, James H., and Mark W. Watson (2002a), "Forecasting Using Principal Components From a Large Number of Predictors", Journal of the American Statistical Assosiation 97, 1167-1179.